Genetic and functional analyses exclude mortality factor 4 (MORF4) as a keratinocyte senescence gene.
نویسندگان
چکیده
Approximately 50% of immortal human keratinocyte lines show loss of heterozygosity of chromosome region 4q33-q34, and the reintroduction of chromosome 4 into one such line, BICR 6, causes proliferation arrest and features of replicative senescence. Recently, a candidate gene, mortality factor 4 (MORF4), was identified in this region and sequenced in 21 immortal keratinocyte lines. There were no mutations or deletions, and two of the seven lines that showed loss of heterozygosity at 4q33-q34 were heterozygous for MORF4 itself. Furthermore, the transfer of a chromosomal segment containing the entire MORF4 gene did not mimic the senescence effect of chromosome 4 in BICR 6. These results suggest that the inactivation of MORF4 is not required for human keratinocyte immortality.
منابع مشابه
Role for the mortality factors MORF4, MRGX, and MRG15 in transcriptional repression via associations with Pf1, mSin3A, and Transducin-Like Enhancer of Split.
mSin3A and Transducin-Like Enhancer of Split (TLE) are two histone deacetylase (HDAC)-containing corepressors that function to repress transcription at targeted genes. Pf1 is a plant homeodomain zinc finger protein that interacts with both mSin3A and TLE, suggesting that it coordinates their function. Here we show that mSin3A and TLE interact with members of the mortality factor (MORF) family o...
متن کاملIdentification of a gene that reverses the immortal phenotype of a subset of cells and is a member of a novel family of transcription factor-like genes.
Based on the dominance of cellular senescence over immortality, immortal human cell lines have been assigned to four complementation groups for indefinite division. Human chromosomes carrying senescence genes have been identified, including chromosome 4. We report the cloning and identification of a gene, mortality factor 4 (MORF 4), which induces a senescent-like phenotype in immortal cell lin...
متن کاملMolecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملFunctional Inhibition of Nucleostemin Gene-Acoordinator of Self-Renewal Ability-In Bone Marrow Derived Mesenchymal Stem Cells by Rnai Strategy
Purpose: The aim is to downregulate the expression level of NS as an important factor in sustaining stem cells and certain types of cancer cells self-renewal ability in bone marrow derived mesenchymal stem cells by RNAi strategy and investigate the effects of absence of NS in these cells. Materials and Methods: Double strand NS-specific and control siRNA oligos were designed and transfected in...
متن کاملEffect of One Time Irradiation of Uvb Non Keratinocyte Growth Factor Gene Expression in Mice
Purpose: Skin is continuously exposed to many hazardous environmental factors such as ultraviolet radiation (UV). Many investigations have been shown to cause skin damages. The aim of present research was to study the effect of a single time of UVB radiation on the expression pattern of keratinocyte growth factor (KGF) gene in mice. Materials and Methods: UVB (30 mJ/cm2 and 50 mJ/cm2) were rad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 59 9 شماره
صفحات -
تاریخ انتشار 1999